Immunological Memory Transferred with CD4 T Cells Specific for Tuberculosis Antigens Ag85B-TB10.4: Persisting Antigen Enhances Protection
نویسندگان
چکیده
BACKGROUND High levels of death and morbidity worldwide caused by tuberculosis has stimulated efforts to develop a new vaccine to replace BCG. A number of Mycobacterium tuberculosis (Mtb)-specific antigens have been synthesised as recombinant subunit vaccines for clinical evaluation. Recently a fusion protein of TB antigen Ag85B combined with a second immunodominant TB antigen TB10.4 was emulsified with a novel non-phospholipid-based liposomal adjuvant to produce a new subunit vaccine, investigated here. Currently, there is no consensus as to whether or not long-term T cell memory depends on a source of persisting antigen. To explore this and questions regarding lifespan, phenotype and cytokine patterns of CD4 memory T cells, we developed an animal model in which vaccine-induced CD4 memory T cells could transfer immunity to irradiated recipients. METHODOLOGY/PRINCIPAL FINDINGS The transfer of protective immunity using Ag85B-TB10.4-specific, CD45RB(low) CD62L(low) CD4 T cells was assessed in sub-lethally irradiated recipients following challenge with live BCG, used here as a surrogate for virulent Mtb. Donor T cells also carried an allotype marker allowing us to monitor numbers of antigen-specific, cytokine-producing CD4 T cells in recipients. The results showed that both Ag85B-TB10.4 and BCG vaccination induced immunity that could be transferred with a single injection of 3x10(6) CD4 T cells. Ten times fewer numbers of CD4 T cells (0.3x10(6)) from donors immunised with Ag85B-TB10.4 vaccine alone, transferred equivalent protection. CD4 T cells from donors primed by BCG and boosted with the vaccine similarly transferred protective immunity. When BCG challenge was delayed for 1 or 2 months after transfer (a test of memory T cell survival) recipients remained protected. Importantly, recipients that contained persisting antigen, either live BCG or inert vaccine, showed significantly higher levels of protection (p<0.01). Overall the numbers of IFN-gamma-producing CD4 T cells were poorly correlated with levels of protection. CONCLUSIONS/SIGNIFICANCE The Ag85B-TB10.4 vaccine, with or without BCG-priming, generated TB-specific CD4 T cells that transferred protective immunity in mice challenged with BCG. The level of protection was enhanced in recipients containing a residual source of specific antigen that could be either viable or inert.
منابع مشابه
Protection and Polyfunctional T Cells Induced by Ag85B-TB10.4/IC31® against Mycobacterium tuberculosis Is Highly Dependent on the Antigen Dose
BACKGROUND Previously we have shown that Ag85B-TB10.4 is a highly efficient vaccine against tuberculosis when delivered in a Th1 inducing adjuvant based on cationic liposomes. Another Th1 inducing adjuvant, which has shown a very promising profile in both preclinical and clinical trials, is IC31. In this study, we examined the potential of Ag85B-TB10.4 delivered in the adjuvant IC31 for the abi...
متن کاملB Cells and Programmed Death-Ligand 2 Signaling Are Required for Maximal Interferon-γ Recall Response by Splenic CD4+ Memory T Cells of Mice Vaccinated with Mycobacterium tuberculosis Ag85B
CD4+ T cells producing interferon-γ are crucial for protection against Mycobacterium tuberculosis infection and are the cornerstone of tuberculosis vaccination and immunological diagnostic assays. Since emerging evidence indicates that B cells can modulate T cell responses to M. tuberculosis infection, we investigated the contribution of B cells in regulating interferon-γ recall response by mem...
متن کاملEfficacy of recombinant bacille Calmette-Guérin vaccine secreting interleukin-15/antigen 85B fusion protein in providing protection against Mycobacterium tuberculosis.
Protection against Mycobacterium tuberculosis not only depends on CD4+ T helper type 1 (Th1) cells but, also, on CD8+ T cells. Interleukin (IL)-15 has an important function in the maintenance of memory CD8+ T cells. In the present study, we examined the efficacy of recombinant Mycobacterium bovis bacille Calmette-Guérin (rBCG) secreting fusion protein antigen (Ag) 85B murine IL-15 (rBCG-Ag85B-I...
متن کاملrBCG Induces Strong Antigen-Specific T Cell Responses in Rhesus Macaques in a Prime-Boost Setting with an Adenovirus 35 Tuberculosis Vaccine Vector
BACKGROUND BCG vaccination, combined with adenoviral-delivered boosts, represents a reasonable strategy to augment, broaden and prolong immune protection against tuberculosis (TB). We tested BCG (SSI1331) (in 6 animals, delivered intradermally) and a recombinant (rBCG) AFRO-1 expressing perfringolysin (in 6 animals) followed by two boosts (delivered intramuscullary) with non-replicating adenovi...
متن کاملHigh frequency of CD4+ T cells specific for the TB10.4 protein correlates with protection against Mycobacterium tuberculosis infection.
TB10.4 is a newly identified antigen of Mycobacterium tuberculosis recognized by human and murine T cells upon mycobacterial infection. Here, we show that immunization with Mycobacterium bovis BCG induces a strong, genetically controlled, Th1 immune response against TB10.4 in mice. BALB/c and C57BL/6 strains behave as high and low responders to TB10.4 protein, respectively. The TB10.4:74-88 pep...
متن کامل